SI-EGR NG Engine w/TWC

Project Update NGNGV Steering Committee

July 23, 2003
Edward Lyford-Pike
Cummins

Review Topics

- Program Overview
- Targets
- Technology/benefits
- Schedule
- Status
- Next steps

Program Overview

- Demonstrate a high efficiency low emissions SI NaturalGas engine with cooled EGR
- Apply Cummins EGR technology to SI Natural Gas
- Diluting with EGR instead of air allows stoichiometric operation and use of a three way catalyst
- Demonstrate diesel like peak thermal efficiency, bmep and 2007 emission targets

Program Overview (cont.)

- 2 year program
- Cummins main subcontractor
- Westport subcontractor to Cummins for catalyst develop.
- Contract signed by SCAQMD July 7th 2003

Technology / Benefits

- Stoichiometric operation allows use of a threeway catalyst
- EGR HD systems availability made possible this approach
- Cooled EGR
 - Dilutes charge and lowers combustion temperatures for lower NOx output
 - Suppresses knock tendency allowing higher bmep
 - Higher bmep results in improved thermal efficiency
 - Cooled EGR improves ignition system durability
- Technology can be applied on various platforms and applications

Project Targets

	SI - EGR TARGET	Current C8.3 Gas Plus			
Rated Power (BHP)	310	280			
Torque Peak Ibs-ft (Ibs-ft)	950	850			
BMEP @ Rated Power (psi)	202	183			
BMEP @ Torque Peak (psi)	283	254			
Torque Peak Ther. Effic. (%)	40	36			
FTP Emissions g/bhp-hr	w/TWC	w/OC			
NOx, NMHC, Formaldh.	0.2, 0.14, 0.01	1.5, 0.2, 0.019			
PM	0.01	0.01			

Schedule

	SI - EGR Natrual Gas Project - SCAQMD								
Task Name			Year 1				Year 2		
	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	
1. Engine Perf. Model Build & Simulation									
2. Modeling of Optimized Hardware									
3. Design & Integration of New Compon.									
4. Controls Model Build & Simulation									
5. Design of Optimized Hardware									
6. Controls Optimization									
7. Engine & Component Sourcing									
8. Test Cell Readiness, Engine Bld & Start									
9. Baseline Perf. & Steady S. Optimization									
10. Transient Optimization									
11. Steady St. Perf. & Emiss. w/Optim. HW									
12. Trans. Perf. & Emiss. w/Optim. HW									
13. Catalyst Selection & Testing									
14. Robustness Verification									
15. Endurance Validation									

Status

- Literature review completed
- Modeling, Design and controls activities on-going
- Procured C Gas Plus engine
- Analysis confirms efficiency improvement

Project Challenges

- Ability to control the A/F ratio during transients
- Cylinder to cylinder variation
- Driving sufficient EGR near the torque curve
- Maintaining stable air handling operation
- Increase in max bulk in-cylinder temperature
- Increased coolant flow needed

System set-up

Peak bulk temp analysis

Peak bulk T is about 10 % higher

Due to:

- higher CR
- higher IMT
- more advanced heat release

How do Bulk temperatures compare between EGR & non-EGR SI nat gas engines?

EMP vs IMP Mapping

EMP > IMP on C Plus engine most of the time

Efficiency Analysis

Brake Thermal Efficiency w/EGR (17.5 bar @ Torque Peak)

Predict how much SI EGR improves efficiency for 850 FT-LBF

Next Steps

- Continue GT-Power model development
- Simulate High Pressure and Low Pressure EGR loops
- Continue Controls System models
- Piston bowl analysis
- Continue Design Activities = HD EGR system adapted to C8.3 Gas Plus engine